Corrosion resistance and antibacterial properties of hydroxyapatite coating induced by gentamicin-loaded polymeric multilayers on magnesium alloys.

Colloids and surfaces. B, Biointerfaces(2019)

引用 73|浏览12
暂无评分
摘要
As a result of their good biocompatibility, bioactivity, and mechanical properties, magnesium (Mg) alloys have received considerable attention as next generation biodegradable implants. Herein, in order to achieve a proper degradation rate and good antibacterial ability, we reported a novel hydroxyapatite coating induced by gentamicin (GS)-loaded polymeric multilayers for the surface treatment of the Mg alloy. The coating was characterized by X-ray diffraction, fourier transform infrared spectroscopy and scanning electron microscopy. The as-prepared hydroxyapatite coating showed the compact morphology and a well-crystallized apatite structure. This coating could improve the adhesion strength and reduce the corrosion rate of the substrate in simulated body fluid solution. Meanwhile, the drug release and antibacterial experiments demonstrated that the GS loaded specimen revealed a significant antimicrobial performance toward Staphylococcus aureus and had a prolonged release profile of GS, which would be helpful to the long-term bactericidal activity of the Mg implant. This coating showed acceptable biocompatibility via MTT assay and Live/dead staining. Thus, the multilayers-hydroxyapatite coated Mg alloy could improve the corrosion resistance and biocompatibility while delivering vital drugs to the site of implantation.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要