No Inhibition of MATE1/2K-Mediated Renal Creatinine Secretion Predicted With Ritonavir or Cobicistat.

Journal of pharmaceutical sciences(2019)

引用 7|浏览11
暂无评分
摘要
Cobicistat has been reported to increase serum creatinine clinically without affecting glomerular filtration. This was ascribed to transient inhibition of MATE1-mediated renal creatinine secretion. Interestingly, a structurally similar drug, ritonavir, has not been associated with serum creatinine increases at the pharmacoenhancer dose. The present study was aimed to investigate the translation of in vitro MATE1/2K inhibition to clinical creatinine increase (cobicistat) and lack of it (ritonavir) considering their intracellular concentrations in renal proximal tubules. Uptake studies showed ritonavir and cobicistat are unlikely substrates for OCT2. The steady-state unbound concentration in the cytosol of human renal proximal tubule epithelial cells was comparable with the extracellular unbound concentration, suggesting that the entry of these compounds is predominantly mediated by passive diffusion. Ritonavir and cobicistat are MATE1 and MATE2K inhibitors with IC50 values of 3.1 and 90 μM (ritonavir), and 4.4 and 3.2 μM (cobicistat), respectively. However, the unbound cytosolic concentrations (Cu,cytosol) of ritonavir and cobicistat in human renal proximal tubule epithelial cells, 0.065 and 0.10 μM, respectively, after incubation with the clinical maximum total plasma concentrations at pharmacoenhancer doses does not support inhibition in vivo; Cu,cytosol >30 fold lower than IC50s. These results demonstrate that MATE1/2K inhibition is unlikely the mechanism of the clinical creatinine elevations with cobicistat.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要