AI帮你理解科学

AI 生成解读视频

AI抽取解析论文重点内容自动生成视频


pub
生成解读视频

AI 溯源

AI解析本论文相关学术脉络


Master Reading Tree
生成 溯源树

ProductQnA: Answering User Questions on E-Commerce Product Pages

Companion Proceedings of The 2019 World Wide Web Conference, pp.354-360, (2019)

被引用9|浏览6
EI
24小时获取PDF
引用

摘要

Product pages on e-commerce websites often overwhelm their customers with a wealth of data, making discovery of relevant information a challenge. Motivated by this, here, we present a novel framework to answer both factoid and non-factoid user questions on product pages. We propose several question-answer matching models leveraging both d...更多

代码

数据

作者
Kartik Mehta
Kartik Mehta
Shweta Garg
Shweta Garg
Vidit Bansal
Vidit Bansal
Nikhil Rasiwasia
Nikhil Rasiwasia
Srinivasan Sengamedu
Srinivasan Sengamedu
您的评分 :
0

 

标签
评论
数据免责声明
页面数据均来自互联网公开来源、合作出版商和通过AI技术自动分析结果,我们不对页面数据的有效性、准确性、正确性、可靠性、完整性和及时性做出任何承诺和保证。若有疑问,可以通过电子邮件方式联系我们:report@aminer.cn
小科