The ground exciton state of formamidinium lead bromide perovskite nanocrystals is a singlet dark state

NATURE MATERIALS(2019)

引用 182|浏览49
暂无评分
摘要
Lead halide perovskites have emerged as promising new semiconductor materials for high-efficiency photovoltaics, light-emitting applications and quantum optical technologies. Their luminescence properties are governed by the formation and radiative recombination of bound electron–hole pairs known as excitons, whose bright or dark character of the ground state remains unknown and debated. While symmetry analysis predicts a singlet non-emissive ground exciton topped with a bright exciton triplet, it has been predicted that the Rashba effect may reverse the bright and dark level ordering. Here, we provide the direct spectroscopic signature of the dark exciton emission in the low-temperature photoluminescence of single formamidinium lead bromide perovskite nanocrystals under magnetic fields. The dark singlet is located several millielectronvolts below the bright triplet, in fair agreement with an estimation of the long-range electron–hole exchange interaction. Nevertheless, these perovskites display an intense luminescence because of an extremely reduced bright-to-dark phonon-assisted relaxation.
更多
查看译文
关键词
Organic–inorganic nanostructures,Quantum dots,Materials Science,general,Optical and Electronic Materials,Biomaterials,Nanotechnology,Condensed Matter Physics
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要