Effect of fiber diameter on surface morphology, mechanical property, and cell behavior of electrospun poly(ε-caprolactone) mat

Fibers and Polymers(2016)

引用 91|浏览6
暂无评分
摘要
In this study, electrospinning of poly(ε-caprolactone) (PCL) and its optimum preparation conditions were examined in detail using various solvent systems, such as formic acid, dichloromethane/dimethyl formamide (DMF), chloroform/DMF, and dichloroethane. The average fiber diameter of the electrospun PCL mat was controlled by the solvent used with a proper concentration of PCL dope solution. Different fiber sizes (0.1, 0.8, 1.9, and 3.4 μ m) of uniform PCL mats were fabricated and the effects of fiber size on surface morphology, tensile properties and cell behavior were investigated. Here, we manipulated much broader range of average fiber diameter of the mats, from nano to several micron size of fiber. It was found that the fiber diameter greatly affected topology (surface roughness) and mechanical properties of the electrospun PCL mat and consequently, they influenced the cell behavior (adhesion and proliferation) significantly. We expect that these results will provide more feasible application of electrospun PCL scaffold in tissue engineering through the co-relations in structure and property of PCL fiber mat on cell behavior.
更多
查看译文
关键词
Poly(ε-caprolactone), Electrospinning, Fiber diameter, Topology, Cell behavior
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要