Enhanced bone regeneration of zirconia-toughened alumina nanocomposites using PA6/HA nanofiber coating via electrospinning

Hamid Esfahani, Mahsa Darvishghanbar,Behzad Farshid

JOURNAL OF MATERIALS RESEARCH(2018)

引用 12|浏览0
暂无评分
摘要
In this study, the bioactivity and cytocompatibility of electrospun polyamide 6 (PA6)/hydroxyapatite (HA) coating on zirconia-toughened alumina (ZTA) were investigated. Adjusting the PA6/HA ratio to 1.15 (w/w) had a significant role in achieving an appropriate fibrous coating with an average diameter of 120 ± 10 nm and surface porosity of 64.3%. The surface of bare and coated samples was hydrophilic, which promoted bone regeneration. The adhesion test of the PA6/HA mat demonstrated that a cohesive coating was formed on the ZTA via electrospinning. The in vitro bioactivity test of the PA6/HA coating in simulated body fluid (SBF) corroborated the formation of a nanostructured bonelike apatite phase. Cytocompatibility of the samples was evaluated through in vitro osteosarcoma-like cell (MG63) culture assays. The cytotoxicity study showed that the electrospun PA6/HA coating significantly improved cell attachment and spreading. The development of such bioactive, biomedical coatings opens new avenues for bone tissue engineering applications.
更多
查看译文
关键词
bone, fiber, nanostructure
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要