Theoretical study of the structural and electronic properties of impurities in non-passivated silicon thin nanowires

Solid State Communications(2019)

引用 2|浏览3
暂无评分
摘要
In this work, we report theoretical results for the presence of the B, C, N, O and F as impurities in non-passivated [001] thin silicon nanowires. The results for the formation energies show that some dopants tend to segregate to the nanowire surfaces, as observed for passivated [110] ones, but at the double negative charge state. The most stable site for the considered impurities is the interstitial one, where the dopants make bridges with the lateral surface Si atoms, below to this surface, except for the oxygen and fluorine ones, which stay close to the central Si atom. For the neutral carbon, nitrogen and fluorine impurities, the surface π-states located at the facets are filled and a small bandgap appears in the calculated impurity band structures. However, if they were at the double negative charge state, the nanowire metallicity is recovered. Considering the boron and oxygen dopants, the neutral charge state enhances the metallic character at the opposite side of the nanowire where they are, which is reduced when two extra electrons are injected in the system and thus, opening slightly the nanowire bandgap. Our results clearly indicate that doping (or creating vacancies in) these nanowires with acceptors, as well as with hydrogen atoms, can reduce the thin nanowire metallic behavior.
更多
查看译文
关键词
Silicon thin nanowires,First row impurities,Formation energies,Electronic structure,DFT calculations
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要