Towards the Design of a Formal Verification and Evaluation Tool of Real-Time Tasks Scheduling of IoT Applications

SUSTAINABILITY(2019)

引用 36|浏览18
暂无评分
摘要
Real-Time Internet of Things (RT-IoT) is a newer technology paradigm envisioned as a global inter-networking of devices and physical things enabling real-time communication over the Internet. The research in Edge Computing and 5G technology is making way for the realisation of future IoT applications. In RT-IoT tasks will be performed in real-time for the remotely controlling and automating of various jobs and therefore, missing their deadline may lead to hazardous situations in many cases. For instance, in the case of safety-critical and mission-critical IoT systems, a missed task could lead to a human loss. Consequently, these systems must be simulated, as a result, and tasks should only be deployed in a real scenario if the deadline is guaranteed to be met. Numerous simulation tools are proposed for traditional real-time systems using desktop technologies, but these relatively older tools do not adapt to the new constraints imposed by the IoT paradigm. In this paper, we design and implement a cloud-based novel architecture for the formal verification of IoT jobs and provide a simulation environment for a typical RT-IoT application where the feasibility of real-time remote tasks is perceived. The proposed tool, to the best of our knowledge, is the first of its kind effort to support not only the feasibility analysis of real-time tasks but also to provide a real environment in which it formally monitors and evaluates different IoT tasks from anywhere. Furthermore, it will also act as a centralised server for evaluating and tracking the real-time scheduled jobs in a smart space. The novelty of the platform is purported by a comparative analysis with the state-of-art solutions against attributes which is vital for any open-source tools in general and IoT in specifics.
更多
查看译文
关键词
Internet of Things,wireless sensor networks,real-time systems,scheduling,embedded systems
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要