A general fluid–sediment mixture model and constitutive theory validated in many flow regimes

JOURNAL OF FLUID MECHANICS(2019)

引用 70|浏览13
暂无评分
摘要
We present a thermodynamically consistent constitutive model for fluid-saturated sediments, spanning dense to dilute regimes, developed from the basic balance laws for two-phase mixtures. The model can represent various limiting cases, such as pure fluid and dry grains. It is formulated to capture a number of key behaviours such as: (i) viscous inertial rheology of submerged wet grains under steady shearing flows, (ii) the critical state behaviour of grains, which causes granular Reynolds dilation/contraction due to shear, (iii) the change in the effective viscosity of the fluid due to the presence of suspended grains and (iv) the Darcy-like drag interaction observed in both dense and dilute mixtures, which gives rise to complex fluid-grain interactions under dilation and flow. The full constitutive model is combined with the basic equations of motion for each mixture phase and implemented in the material point method (MPM) to accurately model the coupled dynamics of the mixed system. Qualitative results show the breadth of problems which this model can address. Quantitative results demonstrate the accuracy of this model as compared with analytical limits and experimental observations of fluid and grain behaviours in inhomogeneous geometries.
更多
查看译文
关键词
granular media,multiphase and particle-laden flows,suspensions
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要