谷歌浏览器插件
订阅小程序
在清言上使用

Atomistic Simulation of Nearly Defect-Free Models of Amorphous Silicon: an Information-Based Approach

MRS advances(2019)

引用 3|浏览9
暂无评分
摘要
We present an information-based total-energy optimization method to produce nearly defect-free structural models of amorphous silicon. Using geometrical, structural, and topological information from disordered tetrahedral networks, we have shown that it is possible to generate structural configurations of amorphous silicon, which are superior than the models obtained from conventional reverse Monte Carlo and molecular dynamics simulations. The new data-driven hybrid approach presented here is capable of producing atomistic models with structural and electronic properties which are on a par with those obtained from the modified Wooten-Winer-Weaire (WWW) models of amorphous silicon. Structural, electronic, and thermodynamic properties of the hybrid models are compared with the best dynamical models obtained from using machine-intelligence-based algorithms and efficient classical molecular dynamics simulations, reported in the recent literature. We have shown that, together with the WWW models, our hybrid models represent one of the best structural models so far produced by total-energy-based Monte Carlo methods in conjunction with experimental diffraction data.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要