Atmospheric observations and emission estimates of ozone-depleting chlorocarbons from India

Atmospheric Chemistry and Physics(2019)

引用 2|浏览50
暂无评分
摘要
Abstract. While the Montreal Protocol has been successful in reducing emissions of many long-lived ozone-depleting substances, growth in the global emission rates of unregulated very short-lived substances (VSLS) poses a potential threat to the recovery of the ozone layer. The sources of these VSLS are not well-constrained, with major source regions poorly monitored by existing measurement networks. Given India's rapidly growing economy, its emissions of both regulated chlorocarbons and unregulated VSLS chlorocarbons are suspected to have global significance. Furthermore, VSLS from the Asian monsoon regions have a greater impact on ozone-depletion than those emitted elsewhere due to the ability of monsoon systems to rapidly transport pollutants to the lower stratosphere. Previous atmospheric measurements of chlorocarbons from the Indian sub-continent are scarce. Here we present a new set of observations, derived from flask samples collected during a 2-month aircraft campaign in India and use these measurements to infer India's chlorocarbon emissions. We show that emissions of carbon tetrachloride from northern and central India (2.3 (1.5–3.4) Gg yr−1), are likely due to inadvertent production and release during the manufacture of chloromethanes (specifically dichloromethane and chloroform) and account for approximately 7 % of the global total. Emissions of methyl chloroform from the same region were estimated to be 0.07 (0.04–0.10) Gg yr−1 which account for less than 5 % of remaining global emissions. We used a population scaling to estimate India's emissions of the very short-lived chlorocarbons dichloromethane, perchloroethene and chloroform, which were estimated to be 69.2 (55.8–82.9) Gg yr−1, 2.9 (2.5–3.3) Gg yr−1 and 25.7 (21.6–29.9) Gg yr−1 respectively. In the case of dichloromethane, our estimate is consistent with a 3-fold increase in emissions since the last estimate derived from atmospheric data in 2008.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要