Variable Chemical Decoration Of Extended Defects In Cu-Poor Cu2znsnse4 Thin Films

PHYSICAL REVIEW MATERIALS(2019)

引用 4|浏览12
暂无评分
摘要
We report on atom probe tomography studies of variable chemical decorations at extended defects in Cu-poor and Zn-rich Cu2ZnSnSe4 thin films. For a precursor film, which was co-evaporated at 320 degrees C, grain boundaries and dislocations are found enriched with Cu. Furthermore, Na out-diffusion from the soda-lime glass substrate occurs even at such a low temperature, resulting in Na segregation at defects. In contrast, stacking faults in the precursor film show clear Zn enrichment as well as Cu and Sn depletion. After an annealing step at 500 degrees C, we detect changes in the chemical composition of grain boundaries as compared to the precursor. Moreover, we measure an increase in the grain boundary excess of Na by one order of magnitude. We show that grain boundaries and dislocations in the annealed Cu2ZnSnSe4 film exhibit no or only slight variations in composition of the matrix elements. Thus, the effect of annealing is a homogenization of the chemical composition.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要