Statistics of roughness for fluctuating interfaces: A survey of different scaling analyses

J. Guyonnet, E. Agoritsas, P. Paruch, S. Bustingorry

arxiv(2021)

引用 18|浏览9
暂无评分
摘要
Ferroic domain walls are known to display the characteristic scaling properties of self-affine rough interfaces. Different methods have been used to extract roughness information in ferroelectric and ferromagnetic materials. Here, we review these different approaches, comparing roughness scaling analysis based on displacement autocorrelation functions in real space, both locally and globally, to reciprocal space methods. This allows us to address important practical issues such as the necessity of a sufficient statistical averaging. As an ideal, artifact-free reference case and particularly targeting finite-size systems, we consider two cases of numerically simulated interfaces, one in equilibrium with a disordered energy landscape and one corresponding to the critical depinning state when the external applied driving force equals the depinning force. We find that the use of the reciprocal space methods based on the structure factor allows the most robust extraction of the roughness exponent when enough statistics is available, while real space analysis based on the roughness function allows the most efficient exploitation of a dataset containing only a limited number of interfaces of variable length. This information is thus important for properly quantifying roughness exponents in ferroic materials.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要