Halide heterogeneity affects local charge carrier dynamics in mixed-ion lead perovskite thin films

CHEMISTRY OF MATERIALS(2019)

引用 31|浏览28
暂无评分
摘要
The mechanism and elemental composition that form the basis for the improved optical and electronic properties in mixed-ion lead halide perovskite solar cells are still not well understood compared to standard methylammonium lead triiodide perovskite devices. Here, we use synchrotron-based X-ray fluorescence to map the composition of perovskite thin films. To get insight into the elemental distribution during film growth, we fabricate films with three different thicknesses. To create a link between the composition and electronic properties, we perform Kelvin probe force microscopy and time-resolved photoluminescence spectroscopy. We find that the elemental composition is highly dependent on the film thickness, in particular, the I/Pb ratio is altered for single grains based on the film thickness. The difference in the I/Pb ratio reveals to be the root cause for the underlying difference in the film lifetime and defect density influencing charge carrier dynamics. Our results provide an in-depth analysis approach combining micro- and nanoscale techniques to shed light onto the fundamental processes, which help to further engineer perovskite thin films and improve device efficiencies.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要