Embryonic and fetal development of the red brocket deer (Mazama americana).

Theriogenology(2019)

引用 5|浏览12
暂无评分
摘要
The red brocket deer (Mazama americana), a medium-sized Neotropical ungulate, is one of the most hunted mammals in the Amazon. This study analyzes the intrauterine development in the red brocket deer through the description of the external and internal morphology in one embryo and 38 fetuses collected from animals hunted for subsistence in the Amazon. The chronological order of occurrence of external characteristics in relation to the total dorsal length (TDL) was: differentiated genitalia, limbs and eyelid buds (TDL = 3.9 cm), fusioned eyelids, outer ear and hooves (TDL ≥ 9.5 cm), skin (TDL ≥ 20.4 cm), tactile pelage and nasal pigmentation (TDL ≥ 21.5 cm), covering pelage and skin spots (TDL ≥ 31.3 cm), and teeth eruption and opened eyelids (TDL ≥ 34.2 cm). The formula of fetal age was ∛W = 0.072 (t - 42), with a high linear relationship between TDL and gestational age. Multiple linear and non-linear regressions showed strong positive associations between biometric measures and absolute visceral weights with TDL. The relative weight of the tubular gastrointestinal organs, spleen and thymus increased during the fetal development; in contrast, the liver and kidneys' relative weight diminished during the fetal development. Advanced fetuses (≥44.0 cm TDL) had lower proportion of liver and larger tubular gastrointestinal organs within the visceral weight than adults. The chronology of appearance of the main events of the fetal development suggests that the red brocket deer adopt some precocial features, such as the early development of the sensorial function, including the early development of eyelids, outer ear and tactile pelage, the early development of the covering pelage which acts in thermoregulation and the early teeth eruption which allows the early foraging. Nevertheless, the precocial level of the red brocket deer is apparently lower than other species more frequently predated by large felids, such as peccaries and the paca.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要