Faster Stochastic Alternating Direction Method of Multipliers for Nonconvex Optimization

international conference on machine learning(2019)

引用 35|浏览61
暂无评分
摘要
In this paper, we propose a faster stochastic alternating direction method of multipliers (ADMM) for nonconvex optimization by using a new stochastic path-integrated differential estimator (SPIDER), called as SPIDER-ADMM. Moreover, we prove that the SPIDER-ADMM achieves a record-breaking incremental first-order oracle (IFO) complexity of $\mathcal{O}(n+n^{1/2}\epsilon^{-1})$ for finding an $\epsilon$-approximate stationary point, which improves the deterministic ADMM by a factor $\mathcal{O}(n^{1/2})$, where $n$ denotes the sample size. As one of major contribution of this paper, we provide a new theoretical analysis framework for nonconvex stochastic ADMM methods with providing the optimal IFO complexity. Based on this new analysis framework, we study the unsolved optimal IFO complexity of the existing non-convex SVRG-ADMM and SAGA-ADMM methods, and prove they have the optimal IFO complexity of $\mathcal{O}(n+n^{2/3}\epsilon^{-1})$. Thus, the SPIDER-ADMM improves the existing stochastic ADMM methods by a factor of $\mathcal{O}(n^{1/6})$. Moreover, we extend SPIDER-ADMM to the online setting, and propose a faster online SPIDER-ADMM. Our theoretical analysis shows that the online SPIDER-ADMM has the IFO complexity of $\mathcal{O}(\epsilon^{-\frac{3}{2}})$, which improves the existing best results by a factor of $\mathcal{O}(\epsilon^{-\frac{1}{2}})$. Finally, the experimental results on benchmark datasets validate that the proposed algorithms have faster convergence rate than the existing ADMM algorithms for nonconvex optimization.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要