Dietary β-Cryptoxanthin Inhibits High-Refined Carbohydrate Diet–Induced Fatty Liver via Differential Protective Mechanisms Depending on Carotenoid Cleavage Enzymes in Male Mice

JOURNAL OF NUTRITION(2019)

引用 10|浏览27
暂无评分
摘要
Background: beta-Cryptoxanthin (BCX), a provitamin A carotenoid shown to protect against nonalcoholic fatty liver disease (NAFLD), can be cleaved by beta-carotene-15,15'-oxygenase (BCO1) to generate vitamin A, and by beta-carotene-9 ',10'-oxygenase (BCO2) to produce bioactive apo-carotenoids. BCO1/BCO2 polymorphisms have been associated with variations in plasma carotenoid amounts in both humans and animals.Objectives: We investigated whether BCX feeding inhibits high refined-carbohydrate diet (HRCD)-induced NAFLD, dependent or independent of BCO1/BCO2.Methods: Six-week-old male wild-type (WT) and BCO1(-/-)/BCO2(-/-) double knockout (DKO) mice were randomly fed HRCD (66.5% of energy from carbohydrate) with or without BCX (10 mg/kg diet) for 24 wk. Pathological and biochemical variables were analyzed in the liver and mesenteric adipose tissues (MATs). Data were analyzed by 2-factor ANOVA.Results: Compared to their respective HRCD controls, BCX reduced hepatic steatosis severity by 33-43% and hepatic total cholesterol by 43-70% in both WT and DKO mice (P < 0.01). Hepatic concentrations of BCX, but not retinol and retinyl palmitate, were 33-fold higher in DKO mice than in WT mice (P < 0.001). BCX feeding increased the hepatic fatty acid oxidation protein peroxisome proliferator-activated receptor-a, and the cholesterol efflux gene ATP-binding cassette transporter5, and suppressed the lipogenesis gene acetyl-CoA carboxylase 1 (Acc1) in the MAT of WT mice but not DKO mice (P < 0.05). BCX feeding decreased the hepatic lipogenesis proteins ACC and stearoyl-CoA desaturase-1 (3-fold and 5-fold) and the cholesterol synthesis genes 3-hydroxy-3-methyl-glutaryl-coenzyme A reductase and HMG-CoA synthase 1 (2.7-fold and 1.8-fold) and increased the cholesterol catabolism gene cholesterol 7 alpha-hydroxylase (1.9-fold) in the DKO but not WT mice (P < 0.05). BCX feeding increased hepatic protein sirtuin1 (2.5-fold) and AMP-activated protein kinase (9-fold) and decreased hepatic farnesoid X receptor protein (80%) and the inflammatory cytokine gene II6 (6-fold) in the MAT of DKO mice but not WT mice (P < 0.05).Conclusion: BCX feeding mitigates HRCD-induced NAFLD in both WT and DKO mice through different mechanisms in the liver-MAT axis, depending on the presence or absence of BCO1/BCO2.
更多
查看译文
关键词
NAFLD, high-refined carbohydrate diet, beta-cryptoxanthin, carotenoid cleavage enzymes, sirtuin 1, nuclear receptors
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要