High-Performance Ultra-Short Channel Field-Effect Transistor Using Solution-Processable Colloidal Nanocrystals.

JOURNAL OF PHYSICAL CHEMISTRY LETTERS(2019)

引用 14|浏览29
暂无评分
摘要
We demonstrate high-mobility solution-processed inorganic field-effect transistors (FETs) with ultra-short channel (USC) length using semiconductor CdSe nanocrystals (NCs). Capping of the NCs with hybrid inorganic organic CdCl3--butylamine ligands enables coarsening of the NCs during annealing at a moderate temperature, resulting in the devices having good transport characteristics with electron mobilities in the saturation regime reaching 8 cm(2) V-1 s(-1) Solution-based processing of the NCs and fabrication of thin films involve neither harsh conditions nor the use of hydrazine. Employing photolithographic methods, we fabricated FETs with a vertical overlap of source and drain electrodes to achieve a submicrometer channel length. To the best of our knowledge, this is the first report on an USC FET based on colloidal semiconductor NCs. Because of a short channel length, the FETs show a normalized transconductance of 4.2 m V-1 s(-1) with a high on/off ratio of 10(5).
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要