TEALS: Time-aware Text Embedding Approach to Leverage Subgraphs

arxiv(2019)

引用 0|浏览31
暂无评分
摘要
Given a graph over which the contagions (e.g. virus, gossip) propagate, leveraging subgraphs with highly correlated nodes is beneficial to many applications. Yet, challenges abound. First, the propagation pattern between a pair of nodes may change in various temporal dimensions. Second, not always the same contagion is propagated. Hence, state-of-the-art text mining approaches ranging from similarity measures to topic-modeling cannot use the textual contents to compute the weights between the nodes. Third, the word-word co-occurrence patterns may differ in various temporal dimensions, which increases the difficulty to employ current word embedding approaches. We argue that inseparable multi-aspect temporal collaborations are inevitably needed to better calculate the correlation metrics in dynamical processes. In this work, we showcase a sophisticated framework that on the one hand, integrates a neural network based time-aware word embedding component that can collectively construct the word vectors through an assembly of infinite latent temporal facets, and on the other hand, uses an elaborate generative model to compute the edge weights through heterogeneous temporal attributes. After computing the intra-nodes weights, we utilize our Max-Heap Graph cutting algorithm to exploit subgraphs. We then validate our model through comprehensive experiments on real-world propagation data. The results show that the knowledge gained from the versatile temporal dynamics is not only indispensable for word embedding approaches but also plays a significant role in the understanding of the propagation behaviors. Finally, we demonstrate that compared with other rivals, our model can dominantly exploit the subgraphs with highly coordinated nodes.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要