Transcriptome Profiling of Primary Skin Fibroblasts Reveal Distinct Molecular Features Between PLOD1 - and FKBP14 -Kyphoscoliotic Ehlers-Danlos Syndrome.

GENES(2019)

引用 14|浏览25
暂无评分
摘要
Kyphoscoliotic Ehlers-Danlos Syndrome (kEDS) is a rare genetic heterogeneous disease clinically characterized by congenital muscle hypotonia, kyphoscoliosis, and joint hypermobility. kEDS is caused by biallelic pathogenic variants in either PLOD1 or FKBP14. PLOD1 encodes the lysyl hydroxylase 1 enzyme responsible for hydroxylating lysyl residues in the collagen helix, which undergo glycosylation and form crosslinks in the extracellular matrix thus contributing to collagen fibril strength. FKBP14 encodes a peptidyl-prolyl cis-trans isomerase that catalyzes collagen folding and acts as a chaperone for types III, VI, and X collagen. Despite genetic heterogeneity, affected patients with mutations in either PLOD1 or FKBP14 are clinically indistinguishable. We aim to better understand the pathomechanism of kEDS to characterize distinguishing and overlapping molecular features underlying PLOD1-kEDS and FKBP14-kEDS, and to identify novel molecular targets that may expand treatment strategies. Transcriptome profiling by RNA sequencing of patient-derived skin fibroblasts revealed differential expression of genes encoding extracellular matrix components that are unique between PLOD1-kEDS and FKBP14-kEDS. Furthermore, we identified genes involved in inner ear development, vascular remodeling, endoplasmic reticulum (ER) stress, and protein trafficking that were differentially expressed in patient fibroblasts compared to controls. Overall, our study presents the first transcriptomics data in kEDS revealing distinct molecular features between PLOD1-kEDS and FKBP14-kEDS, and serves as a tool to better understand the disease.
更多
查看译文
关键词
kyphoscoliotic Ehlers-Danlos Syndrome,EDS type VI,transcriptomics,connective tissue,extracellular matrix,PLOD1,FKBP14
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要