Dynamics of an unbalanced two-ion crystal in a Penning trap for application in optical mass spectrometry

PHYSICAL REVIEW A(2019)

引用 10|浏览1
暂无评分
摘要
In this paper, the dynamics of an unbalanced two-ion crystal comprising the "target" and the "sensor" ions confined in a Penning trap along the magnetic-field axis has been studied. First, the low amplitude regime is addressed. In this regime, the overall potential including the Coulomb repulsion between the ions can be considered harmonic and the axial, magnetron, and reduced-cyclotron modes split up into the so-called stretch and common modes, that are generalizations of the well-known "breathing" and "center-of-mass" motions of a balanced crystal made of two ions. By using optical detection to measure the frequencies of the modes of the crystal, and of the sensor ion on its own, in the quantum regime of motion, it will be possible to determine the target ion's free-cyclotron frequency. The nonharmonicity of the Coulomb interaction is also discussed since this causes large systematic effects, which are minimized due to the high sensitivity of the optical detection method when the crystal is cooled to the ground state of motion in the Penning trap.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要