High-throughput Production of ZnO-MoS 2 -Graphene Heterostructures for Highly Efficient Photocatalytic Hydrogen Evolution.

MATERIALS(2019)

引用 30|浏览10
暂无评分
摘要
High-throughput production of highly efficient photocatalysts for hydrogen evolution remains a considerable challenge for materials scientists. Here, we produced extremely uniform high-quality graphene and molybdenum disulfide (MoS2) nanoplatelets through the electrochemical-assisted liquid-phase exfoliation, out of which we subsequently fabricated MoS2/graphene van der Waals heterostructures. Ultimately, zinc oxide (ZnO) nanoparticles were deposited into these two-dimensional heterostructures to produce an artificial ZnO/MoS2/graphene nanocomposite. This new composite experimentally exhibited an excellent photocatalytic efficiency in hydrogen evolution under the sunlight illumination (A > 400 nm), owing to the extremely high electron mobilities in graphene nanoplatelets and the significant visible-light absorptions of MoS2. Moreover, due to the synergistic effects in MoS2 and graphene, the lifetime of excited carriers increased dramatically, which considerably improved the photocatalytic efficiency of the ZnO/MoS2/graphene heterostructure. We conclude that the novel artificial heterostructure presented here shows great potential for the high-efficient photocatalytic hydrogen generation and the high throughput production of visible-light photocatalysts for industrial applications.
更多
查看译文
关键词
graphene,MoS2,ZnO,photocatalyst,high-throughput production
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要