MicroRNA-214-3p Regulates Hypoxia-Mediated Pulmonary Artery Smooth Muscle Cell Proliferation and Migration by Targeting ARHGEF12.

MEDICAL SCIENCE MONITOR(2019)

引用 20|浏览12
暂无评分
摘要
Background: miR-214-3p has been found to inhibit proliferation and migration in cancer cells. The objective of this study was to determine whether ARHGEF12 is involved in miR-214-3p-mediated suppression of proliferation and migration of pulmonary artery smooth muscle cells (PASMCs). Material/Methods: PASMCs were cultured under normoxia or hypoxia. miR-214-3p mimics or inhibitors were transiently transfected into PASMCs. Proliferation, apoptosis, and migration of PASMCs were evaluated using MTT assay, flow cytometry, and Boyden chamber apparatus. Western blot analysis was used to examine expression of Rho guanine nucleotide exchange factor 12 (ARHGEF12), c-fos, c-jun, and caspase-3. Luciferase reporter assay was used to test the direct regulation of miR-214-3p on the 3'-untranslated region (UTR) of ARHGEF12. Results: miR-214-3p was significantly upregulated in hypoxia-treated PASMCs. Knockdown of miR-214-3p significantly attenuated hypoxia-induced proliferation and migration in PASMCs and promoted apoptosis, whereas this effect was aggravated by overexpression of miR-214-3p. In addition, dual-luciferase reporter assay demonstrated that ARHGEF12 is a direct target gene of miR-214-3p. The protein levels of ARHGEF12 were downregulated after knockdown of miR-214-3p in PASMCs. Rescue experiment results indicated that decreased proliferation of PASMCs resulted from knockdown of miR-214-3p were partially reversed by silencing of ARHGEF12 by siRNA. Furthermore, knockdown of miR-214-3p reduced expression of c-jun and c-fos, but increased expression of caspase-3 in PASMCs under hypoxia. Conclusions: In conclusion, these results indicate that miR-214-3p acts as a novel regulator of hypoxia-induced proliferation and migration by directly targeting ARHGEF12 and dysregulating c-jun and c-fos in PASMCs, and may be a potential therapeutic target for treating pulmonary hypertension.
更多
查看译文
关键词
Hypertension, Pulmonary,MicroRNAs,Rho Guanine Nucleotide Exchange Factors
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要