Three-state nematicity in the triangular lattice antiferromagnet Fe 1/3 NbS 2

arxiv(2020)

引用 53|浏览13
暂无评分
摘要
Nematic order is the breaking of rotational symmetry in the presence of translational invariance. While originally defined in the context of liquid crystals, the concept of nematic order has arisen in crystalline matter with discrete rotational symmetry, most prominently in the tetragonal Fe-based superconductors where the parent state is four-fold symmetric. In this case the nematic director takes on only two directions, and the order parameter in such ‘Ising-nematic’ systems is a simple scalar. Here, using a spatially resolved optical polarimetry technique, we show that a qualitatively distinct nematic state arises in the triangular lattice antiferromagnet Fe 1/3 NbS 2 . The crucial difference is that the nematic order on the triangular lattice is a Z_3 or three-state Potts-nematic order parameter. As a consequence, the anisotropy axes of response functions such as the resistivity tensor can be continuously reoriented by external perturbations. This discovery lays the groundwork for devices that exploit analogies with nematic liquid crystals.
更多
查看译文
关键词
Imaging and sensing,Magnetic properties and materials,Magneto-optics,Phase transitions and critical phenomena,Materials Science,general,Optical and Electronic Materials,Biomaterials,Nanotechnology,Condensed Matter Physics
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要