Direct electrochemistry of bacterial surface displayed cytokinin oxidase and its application in the sensitive electrochemical detection of cytokinins.

Bioelectrochemistry(2019)

引用 2|浏览8
暂无评分
摘要
Cytokinin oxidase from Nipponbare (OsCKX4) was successfully displayed on the surface of E. coli cells by an ice nucleation protein from Pseudomonas borealis DL7 as an anchoring motif and a maltodextrin-binding protein(MBP) from E. coli as a solubility enhancer. The OsCKX4-displayed bacteria can be directly immobilized onto an electrode to selectively detect cytokinins, thus eliminating the need for enzyme extraction and purification. Direct electrochemistry of the cofactor FADH2 in OsCKX4 has been achieved on an edge-plane pyrolytic graphite electrode (PGE) with a formal potential (E0’) of −0.45 V at pH 7.0 in phosphate buffer. With the addition of isopentenyladenine, the reduction peak current for FADH2 decreased, and the oxidative peak current increased gradually. Therefore, a bacteria-OsCKX4-modified PGE has been developed for the detection of isopentenyladenine with a linear range of 1.0–11.0 μM and a lower limit of detection of 0.7 μM (S/N = 3). Slight interference was observed in the presence of other phytohormones, including brassinosteroid, abscisic acid, methylene jasminate and gibberellin. The proposed bacterial biosensor is stable, specific and simple and has great potential for applications that require the detection of cytokinins.
更多
查看译文
关键词
Cytokinin,Cytokinin oxidase-displayed bacteria,Direct electrochemistry,Electrochemical biosensor
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要