Integrating Pseudo-Boolean Constraint Reasoning in Multi-Objective Evolutionary Algorithms.

IJCAI(2019)

引用 1|浏览21
暂无评分
摘要
Constraint-based reasoning methods thrive in solving problem instances with a tight solution space. On the other hand, evolutionary algorithms are usually effective when it is not hard to satisfy the problem constraints. This dichotomy has been observed in many optimization problems. In the particular case of Multi-Objective Combinatorial Optimization (MOCO), new recently proposed constraint-based algorithms have been shown to outperform more established evolutionary approaches when a given problem instance is hard to satisfy. In this paper, we propose the integration of constraint-based procedures in evolutionary algorithms for solving MOCO. First, a new core-based smart mutation operator is applied to individuals that do not satisfy all problem constraints. Additionally, a new smart improvement operator based on Minimal Correction Subsets is used to improve the quality of the population. Experimental results clearly show that the integration of these operators greatly improves multi-objective evolutionary algorithms MOEA/D and NS GAIL Moreover, even on problem instances with a tight solution space, the newly proposed algorithms outperform the state-of-the-art constraint-based approaches for MOCO.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要