Spp1 (osteopontin) promotes TGFβ processing in fibroblasts of dystrophin deficient muscles through matrix metalloproteinases.

HUMAN MOLECULAR GENETICS(2019)

引用 37|浏览11
暂无评分
摘要
Duchenne muscular dystrophy (DMD) is caused by mutations in the gene encoding dystrophin. Prior work has shown that DMD progression can vary, depending on the genetic makeup of the patient. Several modifier alleles have been identified including LTBP4 and SPP1. We previously showed that Spp1 exacerbates the DMD phenotype in the mdx mouse model by promoting fibrosis and by skewing macrophage polarization. Here, we studied the mechanisms involved in Spp1's promotion of fibrosis by using both isolated fibroblasts and genetically modified mice. We found that Spp1 upregulates collagen expression in mdx fibroblasts by enhancing TGF beta signaling. Spp1's effects on TGF beta signaling are through induction of MMP9 expression. MMP9 is a protease that can release active TGF beta ligand from its latent complex. In support for activation of this pathway in our model, we showed that treatment of mdx fibroblasts with MMP9 inhibitor led to accumulation of the TGF beta latent complex, decreased levels of active TGF beta and reduced collagen expression. Correspondingly, we found reduced active TGF beta in Spp1-/-mdxB10 and Mmp9-/-mdxB10 muscles in vivo. Taken together with previous observations of reduced fibrosis in both models, these data suggest that Spp1 acts upstream of TGF beta to promote fibrosis in mdx muscles. We found that in the context of constitutively upregulated TGF beta signaling (such as in the mdxD2 model), ablation of Spp1 has very little effect on fibrosis. Finally, we performed proof-of-concept studies showing that postnatal pharmacological inhibition of Spp1 reduces fibrosis and improves muscle function in mdx mice.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要