谷歌浏览器插件
订阅小程序
在清言上使用

Origin of Ultra-Light Fields During Inflation and Their Suppressed Non-Gaussianity

Journal of Cosmology and Astroparticle Physics(2020)

引用 8|浏览21
暂无评分
摘要
We study the structure of multi-field inflation models where the primordial curvature perturbation is able to vigorously interact with an ultra-light isocurvature field -- a massless fluctuation orthogonal to the background inflationary trajectory in field space. We identify a class of inflationary models where ultra-light fields can emerge as a consequence of an underlying "scaling transformation" that rescales the entire system's action and keeps the classical equations of motion invariant. This scaling invariance ensures the existence of an ultra-light fluctuation that freezes after horizon crossing. If the inflationary trajectory is misaligned with respect to the scaling symmetry direction, then the isocurvature field is proportional to this ultra-light field, and becomes massless. In addition, we find that even if the isocurvature field interacts strongly with the curvature perturbation --transferring its own statistics to the curvature perturbation-- it is unable to induce large non-Gaussianity. The reason is simply that the same mechanism ensuring a suppressed mass for the isocurvature field is also responsible for suppressing its self-interactions. As a result, in models with light isocurvature fields the bispectrum is generally expected to be slow-roll suppressed, but with a squeezed limit that differs from Maldacena's consistency relation.
更多
查看译文
关键词
cosmological perturbation theory,inflation,non-gaussianity
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要