Cofactor-Mediated Nucleophilic Substitution Catalyzed by a Self-Assembled Holoenzyme Mimic.

JOURNAL OF ORGANIC CHEMISTRY(2019)

引用 8|浏览5
暂无评分
摘要
A self-assembled Fe4L6 cage is capable of co-encapsulating multiple carboxylic acid containing guests in its cavity, and these acids can act as cofactors for cage-catalyzed nucleophilic substitutions. The kinetics of the substitution reaction depend on the size, shape, and binding affinity of each of the components, and small structural changes in guest size can have large effects on the reaction. The host is quite promiscuous and is capable of binding multiple guests with micromolar binding affinities while retaining the ability to effect turnover and catalysis. Substrate binding modes vary widely, from simple 1:1 complexes to 1:2 complexes that can show either negative or positive cooperativity, depending on the guest. The molecularity of the dissociative substitution reaction varies, depending on the electrophile leaving group, acid cofactor, and nucleophile size: small changes in the nature of substrate can have large effects on reaction kinetics, all controlled by selective molecular recognition in the cage interior.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要