Chrome Extension
WeChat Mini Program
Use on ChatGLM

Exploring the Effects of Stereo-Defect Distribution on Nonisothermal Crystallization and Melting Behavior of β-Nucleated Isotactic Polypropylene/Graphene Oxide Composites.

ACS omega(2019)

Cited 6|Views14
No score
Abstract
In this work, using two isotactic polypropylene (iPP) resins with similar average isotacticity and molecular weight but different uniformities of stereo-defect distribution, the β-nucleated iPP/graphene oxide (β-iPP/GO) composites (NPP-A and NPP-B) were prepared to investigate the effect of stereo-defect distribution on the nonisothermal crystallization kinetics and polymorphic melting behavior of the composites by means of scanning electron microscopy, wide-angle X-ray diffraction, and differential scanning calorimetry. The results showed that more uniform stereo-defect distribution led to a slight increase of the crystallization rate and decrease of the crystallization activation energy . NPP-B with more uniform stereo-defect was more favorable for the formation of a large amount of β-phase. Moreover, the role of the cooling rate was also discussed and it was found that the higher the cooling rate, the higher the β-phase content and the smaller the crystalline sizes, meanwhile, the higher the amount of β-phase with relatively lower thermal stability that will take part in β-α recrystallization during the subsequent melting process. For β-iPP/GO composites, although the cooling rate greatly influences the polymorphic behavior and crystalline structures of the composites, the uniformity of stereo-defect distribution was found to be the first factor determining the formation of the β-phase.
More
Translated text
Key words
polypropylene/graphene oxide composites,isotactic polypropylene/graphene,nonisothermal crystallization,polypropylene/graphene oxide,stereo-defect
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined