Discovering Interesting Cycles in Directed Graphs
PROCEEDINGS OF THE 28TH ACM INTERNATIONAL CONFERENCE ON INFORMATION & KNOWLEDGE MANAGEMENT (CIKM '19)(2019)
Abstract
Cycles in graphs often signify interesting processes. For example, cyclic trading patterns can indicate inefficiencies or economic dependencies in trade networks, cycles in food webs can identify fragile dependencies in ecosystems, and cycles in financial transaction networks can be an indication of money laundering. Identifying such interesting cycles, which can also be constrained to contain a given set of query nodes, although not extensively studied, is thus a problem of considerable importance. In this paper, we introduce the problem of discovering interesting cycles in graphs. We first address the problem of quantifying the extent to which a given cycle is interesting for a particular analyst. We then show that finding cycles according to this interestingness measure is related to the longest cycle and maximum mean-weight cycle problems (in the unconstrained setting) and to the maximum Steiner cycle and maximum mean Steiner cycle problems (in the constrained setting). A complexity analysis shows that finding interesting cycles is NP-hard, and is NP-hard to approximate within a constant factor in the unconstrained setting, and within a factor polynomial in the input size for the constrained setting. The latter inapproximability result implies a similar result for the maximum Steiner cycle and maximum mean Steiner cycle problems. Motivated by these hardness results, we propose a number of efficient heuristic algorithms. We verify the effectiveness of the proposed methods and demonstrate their practical utility on two real-world use cases: a food web and an international trade-network dataset.
MoreTranslated text
Key words
graph algorithms, maximum mean steiner cycle, maximum mean weight cycle, subjective interestingness
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined