谷歌浏览器插件
订阅小程序
在清言上使用

Kinetic processes of copper and lead remobilization during sediment resuspension of marine polluted sediments.

Science of The Total Environment(2020)

引用 23|浏览16
暂无评分
摘要
Contaminated sediments could act as a source of contamination to the surrounding environments by several processes (e.g., diffusive flux, sediment resuspension). This study aimed at highlighting the mechanisms of copper and lead mobilization from resuspended particles to the aqueous phase using laboratory experiments and a kinetic model. Three sediments, differed by their compositions and metal partition from Toulon Bay (SE France) were used. In addition, three solid/liquid ratios (0.1, 1 and 10 g L−1) allowed simulating at best natural and anthropogenic scenarios (e.g., storm, nautical traffic, dredging). We monitored metal concentrations, physicochemical parameters (pH, Eh, [O2]) and organic matter concentration along with their optical properties. Experimental results showed successive reactions over short and long terms (hour and day scale, respectively) that controlled Cu and Pb exchanges between particles and the aqueous phase over 4 weeks. The quick Cu removal was attributed to the implications of newly formed oxides while the long-term Cu release in the dissolved fraction from the more refractory solid pool is more likely related to organic complexation. In fact, we observed a transformation of the dissolved organic matter: an increase in molecular weight and in humic fluorescence properties. However, the Pb removal toward the end of the experiment could be explained by a migration toward the exchangeable sites of higher energy, which could correspond to the particulate organic matter or a combination with organic-coating carrier phases. Both kinetic rate and system response times (τi) were coherent despite the variability of parameters intrinsic to sediments (e.g., sediment composition and initial metal repartition) but also extrinsic parameters (solid/liquid ratios). Such a coherence would imply the universality of the obtained constants to be used in a more predictive approach to assess the potential of metal mobility using metal repartition in contaminated sediments when combined with hydrological and sedimentological models.
更多
查看译文
关键词
Copper,Lead,Sediments,Kinetic modeling,Organic matter,Oxides
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要