谷歌浏览器插件
订阅小程序
在清言上使用

Cold water immersion attenuates anabolic signalling and skeletal muscle fiber hypertrophy, but not strength gain, following whole-body resistance training.

JOURNAL OF APPLIED PHYSIOLOGY(2019)

引用 36|浏览20
暂无评分
摘要
We determined the effects of cold water immersion (CWI) on long-term adaptations and post-exercise molecular responses in skeletal muscle before and after resistance training. Sixteen men (22.9 +/- 4.6 y; 85.1 +/- 17.9 kg; mean +/- SD) performed resistance training (3 day/wk) for 7 wk, with each session followed by either CWI [15 min at 10 degrees C. CWI (COLD) group, n = 8] or passive recovery (15 min at 23 degrees C, control group, n = 8). Exercise performance [one-repetition maximum (1-RM) leg press and bench press, countermovement jump, squat jump, and ballistic push-up], body composition (dual X-ray absorptiometry), and post-exercise (i.e., +1 and +48 h) molecular responses were assessed before and after training. Improvements in 1-RM leg press were similar between groups [130 +/- 69 kg, pooled effect size (ES): 1.53 +/- 90% confidence interval (CI) 0.49], whereas increases in type II muscle fiber cross-sectional area were attenuated with CWI (-1,959 +/- 1,675 mu M-2; ES: -1.37 +/- 0.99). Post-exercise mechanistic target of rapamycin complex 1 signaling (rps6 phosphorylation) was blunted for COLD at post-training (POST) +1 h (-0.4-fold, ES: -0.69 +/- 0.86) and POST +48 h (-0.2-fold, ES: -1.33 +/- 0.82). whereas basal protein degradation markers (FOX-01 protein content) were increased (1.3-fold, ES: 2.17 +/- 2.22). Training-induced increases in heat shock protein (HSP) 27 protein content were attenuated for COLD (-0.8-fold, ES: -0.94 +/- 0.82), which also reduced total HSP72 protein content (-0.7-fold, ES: -0.79 +/- 0.57). CWI blunted resistance training-induced muscle fiber hypertrophy, but not maximal strength, potentially via reduced skeletal muscle protein anabolism and increased catabolism. Post-exercise CWI should therefore be avoided if muscle hypertrophy is desired. NEW & NOTEWORTHY This study adds to existing evidence that post-exercise cold water immersion attenuates muscle fiber growth with resistance training, which is potentially mediated by attenuated post-exercise increases in markers of skeletal muscle anabolism coupled with increased catabolism and suggests that blunted muscle fiber growth with cold water immersion does not necessarily translate to impaired strength development.
更多
查看译文
关键词
adaptation,anabolism,catabolism,cold water immersion,resistance training
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要