Chrome Extension
WeChat Mini Program
Use on ChatGLM

Transdermal Delivery of 4-Aminopyridine Accelerates Motor Functional Recovery and Improves Nerve Morphology Following Sciatic Nerve Crush Injury in Mice

Neural Regeneration Research/Neural regeneration research(2020)

Cited 13|Views18
No score
Abstract
Oral 4-aminopyridine (4-AP) is clinically used for symptomatic relief in multiple sclerosis and we recently demonstrated that systemic 4-AP had previously unknown clinically-relevant effects after traumatic peripheral nerve injury including the promotion of re-myelination, improvement of nerve conductivity, and acceleration of functional recovery. We hypothesized that, instead of oral or injection administration, transdermal 4-AP (TD-4-AP) could also improve functional recovery after traumatic peripheral nerve injury. Mice with surgical traumatic peripheral nerve injury received TD-4AP or vehicle alone and were examined for skin permeability, pharmacokinetics, functional, electrophysiological, and nerve morphological properties. 4-AP showed linear pharmacokinetics and the maximum plasma 4-AP concentrations were proportional to TD-4-AP dose. While a single dose of TD-4-AP administration demonstrated rapid transient improvement in motor function, chronic TD-4-AP treatment significantly improved motor function and nerve conduction and these effects were associated with fewer degenerating axons and thicker myelin sheaths than those from vehicle controls. These findings provide direct evidence for the potential transdermal applicability of 4-AP and demonstrate that 4-AP delivered through the skin can enhance in-vivo functional recovery and nerve conduction while decreasing axonal degeneration. The animal experiments were approved by the University Committee on Animal Research (UCAR) at the University of Rochester (UCAR-2009-019) on March 31, 2017.
More
Translated text
Key words
4-aminopyridine,electron microscopy,functional recovery,nerve conduction velocity,peripheral nerve injury,pharmacokinetics,transdermal administration
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined