RandAugment: Practical data augmentation with no separate search

arxiv(2019)

引用 263|浏览165
暂无评分
摘要
Recent work has shown that data augmentation has the potential to significantly improve the generalization of deep learning models. Recently, learned augmentation strategies have led to state-of-the-art results in image classification and object detection. While these strategies were optimized for improving validation accuracy, they also led to state-of-the-art results in semi-supervised learning and improved robustness to common corruptions of images. One obstacle to a large-scale adoption of these methods is a separate search phase which significantly increases the training complexity and may substantially increase the computational cost. Additionally, due to the separate search phase, these learned augmentation approaches are unable to adjust the regularization strength based on model or dataset size. Learned augmentation policies are often found by training small models on small datasets and subsequently applied to train larger models. In this work, we remove both of these obstacles. RandAugment may be trained on the model and dataset of interest with no need for a separate proxy task. Furthermore, due to the parameterization, the regularization strength may be tailored to different model and dataset sizes. RandAugment can be used uniformly across different tasks and datasets and works out of the box, matching or surpassing all previous learned augmentation approaches on CIFAR-10, CIFAR-100, SVHN, and ImageNet. On the ImageNet dataset we achieve 85.0% accuracy, a 0.6% increase over the previous state-of-the-art and 1.0% increase over baseline augmentation. On object detection, RandAugment leads to 1.0-1.3% improvement over baseline augmentation, and is within 0.3% mAP of AutoAugment on COCO. Finally, due to its interpretable hyperparameter, RandAugment may be used to investigate the role of data augmentation with varying model and dataset size.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要