基于SURF特征和Delaunay三角网格的图像匹配

闫自庚
闫自庚

自动化学报, 2014.

Cited by: 0|Views47

Abstract:

图像特征匹配的核心是通过距离函数实现在高维矢量空间进行相似性检索.重点研究提取好的特征点并快速准确地找到查询点的近邻.首先,提取图像的多量、有区别且稳健的SURF(Speeded up robust feature)特征点,并将特征点凸包进行Delaunay剖分.然后,对Delaunay三角边抽样、聚类、量化并构建索引.通过票决算法,将点对匹配与否映射到矩阵中以解决距离度量没有利用数据集本身所蕴含的任何结构信息和搜索效率相对较低的问题.结合SURF算法和Delaunay三角网提出一种特征匹配的新方法,在标准图像集上的实验验证,在耗时基本相同的情况下,提取的特征点较多且正确匹配率较高.

Code:

Data:

ZH基于SURF特征和Delaunay三角网格的图像匹配
Get fulltext within 24h
Bibtex
Upload PDF

1.Your uploaded documents will be check within 24h, and coins will be credited to your account.

2.As the current system does not support cash withdrawal, you can add staff WeChat (AMxiaomai) to receive it as a red packet.

3.10 coins will be exchanged for 1 yuan.

?

Upload a single paper

for 5 coins

Wechat's Red Packet
?

Upload 50 articles

for 250 coins

Wechat's Red Packet
?

Upload 200 articles

for 1000 coins

Wechat's Red Packet
?

Upload 500 articles

for 2500 coins

Wechat's Red Packet
?

Upload 1000 articles

for 5000 coins

Wechat's Red Packet
Your rating :
0

 

Tags
Comments