Theoretical Studies on Novel Gridspiroarenes: Structures, noncovalent interactions and reorganization energies

CHINESE JOURNAL OF CHEMISTRY(2019)

引用 17|浏览9
暂无评分
摘要
The of main observation and conclusion Organic semiconductor materials with low reorganization energy have various applications such as in organic light-emitting diodes (OLEDs), organic field-effect transistor (OFETs) and organic solar cells (OSCs). In this work, we have designed a new class of gridspiroarenes (GS-SFX and GS-SITF) with #-shaped structures, which have novel crisscross geometrical structures compared to widely used spirocyclic arenes-SFX and SITF. The structure electronic properties, adiabatic ionization potentials (IPa), adiabatic electron affinities (EA(a)) and reorganization energies (lambda) of GS-SFX and GS-SITF have been calculated using density functional theory (DFT) method. The calculated HOMO and LUMO spatial distributions suggest that GS-SFX and GS-SITF have better transport properties. The noncovalent interaction analysis shows the weak intramolecular interactions between their arms. The results indicate that the reorganization energies of GS-SFX and GS-SITF are significantly reduced compared to the dimer structures-DSFX and DSITF. Furthermore, the GS-SITF1 which is one of the isomers of GS-SITF exhibits the lowest values for lambda(h) (0.067 eV) and lambda(e) (0.153 eV). Therefore, we believe the predicted structure, electronic property, and reorganization energy are good indicator for transport materials. This work has systematically studied the effect of gridization, which provides insights to design organic semiconductor materials with excellent charge transport properties.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要