Composite Poly(Norbornene) Anion Conducting Membranes For Achieving Durability, Water Management And High Power (3.4 W/Cm(2)) In Hydrogen/Oxygen Alkaline Fuel Cells

JOURNAL OF THE ELECTROCHEMICAL SOCIETY(2019)

引用 157|浏览11
暂无评分
摘要
Alkaline fuel cells and electrolyzers are of interest because they have potential advantages over their acid counterparts. High-conductivity anion conducting membranes were analyzed and used in alkaline hydrogen/oxygen fuel cells. The membranes were composed of reinforced block copolymers of poly(norbornenes) with pendant quaternary ammonium head-groups. It was found that membranes with light cross-linking provided excellent mechanical stability and allowed very high ion exchange capacity polymers to be used without penalty of excessive water uptake and swelling. The optimum membrane and fuel cell operating conditions were able to achieve a peak power density of 3.4W/cm(2) using hydrogen and oxygen. The performance increase was greater than expected from minimizing ohmic losses. Mechanical deformations within the membrane due to excess water uptake can disrupt full cell operation. Cells were also run for over 500 h under load with no change in the membrane resistance and minimal loss of operating voltage. (c) The Author(s) 2019. Published by ECS. This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 License (CC BY, http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse of the work in any medium, provided the original work is properly cited.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要