谷歌浏览器插件
订阅小程序
在清言上使用

Nano-fibrous SrCe0·8Y0·2O3-δ-Ni Anode Functional Layer for Proton-Conducting Solid Oxide Fuel Cells

Journal of power sources(2019)

引用 9|浏览13
暂无评分
摘要
This study presents a nanofiber-derived functional anode consisting of proton-conducting SrCe0.8Y0.2O3-delta nanofibers and electro-catalytic Ni for proton-conducting solid oxide fuel cells. Fuel cell testing with the nano fibrous SrCe0.8Y0.2O3-delta-Ni anode exhibits a maximum power density of 201.0 mW/cm(2) at 800 degrees C, which is significantly higher than those of cells with a powder-derived Ba0.8Sr0.2Ce0.6Zr0.2Y0.2O3-delta-Ni anode or a nano fibrous SrCe0.8Y0.2O3-delta anode. Its relatively lower ohmic resistance can be explained in terms of protonic and electronic "highways" throughout the nano-fibrous SrCe0.8Y0.2O3-delta-Ni anode. The significantly lower polarization resistance elements, R-1 and R-2, further indicate that the nano-fibrous SrCe0.8Y0.2O3-delta-Ni anode has superior catalytic activity for the hydrogen oxidation reaction and thus generates more protons that can participate in the cathode reactions. The results show that the performance enhancement in the fuel cell with the nano-fibrous SrCe0.8Y0.2O3-delta-Ni anode can be attributed to its low ohmic resistance, excellent electrode catalytic activity, and good gas transport property.
更多
查看译文
关键词
Solid oxide fuel cells,Proton-conducting electrolyte,SrCe0.8Y0.2O3-delta nanofibers,Composite anode,Electrospinning
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要