Direct Writing Of Heterostructures In Single Atomically Precise Graphene Nanoribbons

PHYSICAL REVIEW MATERIALS(2019)

引用 17|浏览31
暂无评分
摘要
Precision control of interfacial structures and electronic properties is the key to the realization of functional heterostructures. Here, utilizing the scanning tunneling microscope (STM) both as a manipulation and characterization tool, we demonstrate the fabrication of a heterostructure in a single atomically precise graphene nanoribbon (GNR) and report its electronic properties. The heterostructure is made of a seven-carbon-wide armchair GNR and a lower band gap intermediate ribbon synthesized bottom-up from a molecular precursor on an Au substrate. The short GNR segments are directly written in the ribbon with a STM tip to form atomic precision intraribbon heterostructures. Based on STM studies combined with density functional theory calculations, we show that the heterostructure has a type-I band alignment, with manifestations of quantum confinement and orbital hybridization. Our finding demonstrates a feasible strategy to create a double-barrier quantum dot structure with atomic precision for functionalities, such as negative differential resistance devices in GNR-based nanoelectronics.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要