谷歌浏览器插件
订阅小程序
在清言上使用

Massive and Sustained Enhancement of the Electrical Conductivity of Polystyrene Using Multilayer Graphene at Low Loadings, and Carbon Black As a Dispersion Aid

Colloids and Surfaces A Physicochemical and Engineering Aspects(2019)

引用 4|浏览2
暂无评分
摘要
The high electrical conductivity of multilayer graphene (MLG) and their sheet like morphology results in a low percolation threshold, and makes it an attractive filler for inducing electrical conductivity in an insulating polymer at small filler loadings. However, strong van der Waals forces between the flat faces of multilayer graphene cause agglomeration, making it difficult to disperse them in a polymer. The loading required for forming a percolating network of these MLGs then increases dramatically, and the advantage of their sheet-like morphology is lost. To enhance the dispersion of MLGs, carbon black nanoparticles (CB) were added as secondary fillers to a polystyrene (PS) matrix containing 2.5 vol% MLG. The electrical conductivity of the composite increased from 10(-9) S/m with no CB to 10(-4) S/m with 1.5 vol% CB, asymptoting to 10(3) S/m at similar to 12 vol% CB. Using Raman spectroscopy and wide-angle X-ray diffraction, we confirmed that the CB particles act as dispersion aids and prevent MLG restacking, reducing agglomeration and enhancing dispersion of the MLG sheets in PS. This leads to an increase of several orders of magnitude in electrical conductivity.
更多
查看译文
关键词
Polystyrene electrical conductivity,Multilayer graphene,Carbon black
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要