The Significance Of Grain Morphology And Moisture Content On The Response Of Silica Sand To Ballistic Penetration

APPLIED PHYSICS LETTERS(2019)

引用 3|浏览11
暂无评分
摘要
The dynamic response of sand is of interest for a wide range of applications, from civil engineering to asteroid impact, in addition to defense and industrial processes. Granular dynamics are controlled by a complex network of intergrain force chains; yet, our understanding of how grain morphology, moisture, rate, and loading geometry affect the response to rapid compaction remains limited. Here, we show how just 1% moisture can significantly reduce penetration resistance in silica sand, while smoother-grained material-with a similar bulk density, grain size, and mineralogy-exhibits markedly improved stopping power. Cylindrical targets are impacted by spherical steel projectiles, with Digital Speckle Radiography employed to determine both the penetration depth and the sand bed displacement at a series of incremental time steps after impact. The results provide substantial insight into how slight adjustments to grain-grain contact points can affect the bulk dynamic response of brittle granular materials.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要