Dynamically tuned non-classical light emission from atomic defects in hexagonal boron nitride

COMMUNICATIONS PHYSICS(2019)

引用 41|浏览13
暂无评分
摘要
Luminescent defects in hexagonal boron nitride (h-BN) have recently emerged as a promising platform for non-classical light emission. On-chip solutions, however, require techniques for controllable in-situ manipulation of quantum light. Here, we demonstrate the dynamic spectral and temporal tuning of the optical emission from h-BN via moving acousto-mechanical modulation induced by stimulated phonons. When perturbed by the propagating acoustic phonon, the optically probed radiative h-BN defects are periodically strained and their sharp emission lines are modulated by the deformation potential coupling. This results in an acoustically driven spectral tuning within a 2.5-meV bandwidth. Our findings, supported by first-principles theoretical calculations, reveal exceptionally high elasto-optic coupling in h-BN of ~50 meV/%. Temporal control of the emitted photons is achieved by combining the acoustically mediated fine-spectral tuning with spectral detection filtering. This study opens the door to the use of sound for scalable integration of h-BN emitters in nanophotonic and quantum information technologies.
更多
查看译文
关键词
Photoacoustics,Two-dimensional materials,Physics,general
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要