谷歌浏览器插件
订阅小程序
在清言上使用

Ultrasensitive quantitative measurement of huntingtin phosphorylation at residue S13.

Biochemical and Biophysical Research Communications(2020)

引用 10|浏览18
暂无评分
摘要
Huntington’s disease (HD) is a progressive neurodegenerative disorder caused by an expansion of a CAG triplet repeat (encoding for a polyglutamine tract) within the first exon of the huntingtin gene. Expression of the mutant huntingtin (mHTT) protein can result in the production of N-terminal fragments with a robust propensity to form oligomers and aggregates, which may be causally associated with HD pathology. Several lines of evidence indicate that N17 phosphorylation or pseudophosphorylation at any of the residues T3, S13 or S16, alone or in combination, modulates mHTT aggregation, subcellular localization and toxicity. Consequently, increasing N17 phosphorylation has been proposed as a potential therapeutic approach. However, developing genetic/pharmacological tools to quantify these phosphorylation events is necessary in order to subsequently develop tool modulators, which is difficult given the transient and incompletely penetrant nature of such post-translational modifications. Here we describe the first ultrasensitive sandwich immunoassay that quantifies HTT phosphorylated at residue S13 and demonstrate its utility for specific analyte detection in preclinical models of HD.
更多
查看译文
关键词
Post-translational modifications,Immunoassay,Phosphorylation,Huntington’s disease,Neurodegeneration
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要