Learning Kalman Network: A deep monocular visual odometry for on-road driving.

Robotics and Autonomous Systems(2019)

引用 16|浏览33
暂无评分
摘要
This paper proposes a Learning Kalman Network (LKN) based monocular visual odometry (VO), i.e. LKN-VO, for on-road driving. Most existing learning-based VO focus on ego-motion estimation by comparing the two most recent consecutive frames. By contrast, the LKN-VO incorporates a learning ego-motion estimation through the current measurement, and a discriminative state estimator through a sequence of previous measurements. Superior to the model-based monocular VO, a more accurate absolute scale can be learned by LKN without any geometric constraints. In contrast to the model-based Kalman Filter (KF), the optimal model parameters of LKN can be obtained from dynamic and deterministic outputs of the neural network without elaborate human design. LKN is a hybrid approach where we achieve the non-linearity of the observation model and the transition model though deep neural networks, and update the state following the Kalman probabilistic mechanism. In contrast to the learning-based state estimator, a sparse representation is further proposed to learn the correlations within the states from the car’s movement behaviour, thereby applying better filtering on the 6DOF trajectory for on-road driving. The experimental results show that the proposed LKN-VO outperforms both model-based and learning state-estimator-based monocular VO on the most well-cited on-road driving datasets, i.e. KITTI and Apolloscape. In addition, LKN-VO is integrated with dense 3D mapping, which can be deployed for simultaneous localization and mapping in urban environments.
更多
查看译文
关键词
Monocular visual odometry,Learning Kalman Filter,Vehicle driving
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要