Initial Solvent-Driven Nonequilibrium Effect on Structure, Properties, and Dynamics of Polymer Nanocomposites.

PHYSICAL REVIEW LETTERS(2019)

引用 22|浏览7
暂无评分
摘要
Unusual structures and dynamic properties found in polymer nanocomposites (PNCs) are often attributed to immobilized (adsorbed) polymers at nanoparticle-polymer interfaces, which are responsible for reducing the intrinsic incompatibility between nanoparticles and polymers in PNCs. Although tremendous effort has been made to characterize the presence of immobilized polymers, a systematic understanding of the structure and dynamics under different processing conditions is still lacking. Here, we report that the initial dispersing solvent, which is not present after producing PNCs, drives these nonequilibrium effects on polymer chain dynamics at interfaces. Employing extensive small-angle scattering, proton NMR spectroscopy, and rheometry experiments, we found that the thickness of the immobilized layer can be dependent on the initial solvent, changing the structure and the properties of the PNC significantly. In addition, we show that the outcome of the initial solvent effect becomes more effective at particle volume fractions where the immobile layers begin to interact.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要