Mechanisms of Resistance Associated with the Inhibition of the Dehydration Step of Type II Fatty Acid Synthase in Mycobacterium tuberculosis.

ACS infectious diseases(2019)

引用 10|浏览46
暂无评分
摘要
Isoxyl (ISO) and thiacetazone (TAC) are two antitubercular prodrugs that abolish mycolic acid biosynthesis and kill Mycobacterium tuberculosis (Mtb) through the inhibition of the essential type II fatty acid synthase (FAS-II) dehydratase HadAB. While mutations preventing ISO and TAC either from being converted to their active form or from covalently modifying their target are the most frequent spontaneous mutations associated with high-level resistance to both drugs, the molecular mechanisms underlying the high-level ISO and TAC resistance of Mtb strains harboring missense mutations in the second, nonessential, FAS-II dehydratase HadBC have remained unexplained. Using a combination of genetic, biochemical, and biophysical approaches and molecular dynamics simulation, we here show that all four reported resistance mutations in the HadC subunit of HadBC alter the stability and/or specific activity of the enzyme, allowing it in two cases (HadBCV85I and HadBCK157R) to compensate for a deficiency in HadAB in whole Mtb bacilli. The analysis of the mycolic acid profiles of Mtb strains expressing the mutated forms of HadC further points to alterations in the activity of the mycolic acid biosynthetic complex and suggests an additional contributing resistance mechanism whereby HadC mutations may reduce the accessibility of HadAB to ISO and TAC. Collectively, our results highlight the importance of developing optimized inhibitors of the dehydration step of FAS-II capable of inhibiting both dehydratases simultaneously, a goal that may be achievable given the structural resemblance of the two enzymes and their reliance on the same catalytic subunit HadB.
更多
查看译文
关键词
Mycobacterium,tuberculosis,mycolic acids,FAS-II,dehydratase,isoxyl,thiacetazone
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要