谷歌浏览器插件
订阅小程序
在清言上使用

Regulation of Recurrent Inhibition by Asynchronous Glutamate Release in Neocortex

Neuron(2020)

引用 29|浏览31
暂无评分
摘要
The timing and size of inhibition are crucial for dynamic excitation-inhibition balance and information processing in the neocortex. The underlying mechanism for temporal control of inhibition remains unclear. We performed dual whole-cell recordings from pyramidal cells (PCs) and nearby inhibitory interneurons in layer 5 of rodent neocortical slices. We found asynchronous release (AR) of glutamate occurs at PC output synapses onto Martinotti cells (MCs), causing desynchronized and prolonged firing in MCs and thus imprecise and long-lasting inhibition in neighboring PCs. AR is much stronger at PC-MC synapses as compared with those onto fast-spiking cells and other PCs, and it is also dependent on PC subtypes, with crossed-corticostriatal PCs producing the strongest AR. Moreover, knocking out synaptotagmin-7 substantially reduces AR strength and recurrent inhibition. Our results highlight the effect of glutamate AR on the operation of microcircuits mediating slow recurrent inhibition, an important mechanism for controlling the timing and size of cortical inhibition.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要