Long-term chemothermal stability of delithiated NCA in polymer solid-state batteries

JOURNAL OF MATERIALS CHEMISTRY A(2019)

引用 10|浏览22
暂无评分
摘要
In this study, the long-term chemothermal stability of chemically delithiated Li0.3Ni0.8Co0.15Al0.05O2 (Li(0.3)NCA) was systematically investigated at relevant operating temperatures of polymer solid-state batteries using ex situ synchrotron-based hard and soft X-ray absorption spectroscopy. The reduction of nickel on the surface, subsurface, and in the bulk of secondary NCA particles was studied and directly related to aging time, temperature, the presence of polymeric electrolyte (poly(ethylene oxide) or polycaprolactone), and lithium salt (lithium tetrafluoroborate or lithium bis(trifluoromethanesulfonyl)imide). Depending on the polymer and/or lithium salt accompanying the delithiated Li(0.3)NCA, reduction of nickel at the surface, subsurface, and bulk occurs to varying extents, starting at the surface and propagating into the bulk material. Our results indicate how degradation (reduction of nickel) is strongly correlated to temperature, time, and the presence of blended polymer and/or lithium salt in the cathode. The relative stability of the NCA material in cathodes having different polymer and lithium salt combinations identified in the ex situ spectroscopy study is directly demonstrated in solid-state polymer batteries.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要