Deactivation of Cu-Exchanged Automotive-Emission NH3 -SCR Catalysts Elucidated with Nanoscale Resolution Using Scanning Transmission X-ray Microscopy.

Angewandte Chemie (International ed. in English)(2020)

引用 35|浏览12
暂无评分
摘要
To gain insight into the underlying mechanisms of catalyst durability for the selective catalytic reduction (SCR) of NOx with an ammonia reductant, we employed scanning transmission X-ray microscopy (STXM) to study Cu-exchanged zeolites with the CHA and MFI framework structures before and after simulated 135 000-mile aging. X-ray absorption near-edge structure (XANES) measurements were performed at the Al K- and Cu L-edges. The local environment of framework Al, the oxidation state of Cu, and geometric changes were analyzed, showing a multi-factor-induced catalytic deactivation. In Cu-exchanged MFI, a transformation of CuII to CuI and Cux Oy was observed. We also found a spatial correlation between extra-framework Al and deactivated Cu species near the surface of the zeolite as well as a weak positive correlation between the amount of CuI and tri-coordinated Al. By inspecting both Al and Cu in fresh and aged Cu-exchanged zeolites, we conclude that the importance of the preservation of isolated CuII sites trumps that of Brønsted acid sites for NH3 -SCR activity.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要